
  

Artificial Intelligence

Lecture 15 – Neural Networks



  

Outline

● Units and links
● Activation functions
● Computing boolean functions
● Network structures

● perceptrons
● networks with hidden units

● Learning weights and backpropogation
● Choosing an appropriate network structure



  

Neural Networks

● A neuron is a brain cell that collects and processes electrical signals

● Information processing capabilities of the brain emerge from 
interactions of networks of neurons

● Early work in AI, e.g., McCulloch & Pitts 1943) investigated artificial 
neural networks

● Nodes in an (artificial) neural network are much simpler than real 
neurons



  

Units & Links

● (Artificial) neural networks are composed of nodes or 
units

● Each unit has an activation level, a
i
 which ranges 

from -1 (or 0) to +1
● Units are connected by directed links – a link from 

unit j to unit i serves to propogate the activation a
j
 of 

unit j to i

● Each link also has an associated weight, w
j,i
, which 

determines the strength and sign of the connection



  

Computing Activation

● To compute its activation, a
i
, each unit i first computes a 

weighted sum of its inputs given by

where n is the number of other units which have links to i 
and a

j
 is the activation of the j-th such unit, 0 < j ≤ n

● It then applies an activation function, g, to this sum to 
derive its activation



  

Computing Activation



  

Activation Function

● Activation function must satisfy two properties
● The unit should be active (activation near +1) 

when the 'right' inputs are given and inactive 
(activation near -1 or 0) when the 'wrong' inputs 
are given

● Activation function must be nonlinear, otherwise 
the whole network collapses to a simple linear 
function



  

Threshold & Sigmoid Functions

● Two commonly used activation functions are the 
threshold function (a) and the sigmoid function (b)

● Threshold function outputs 1 when the input is positive 
and 0 otherwise

● The sigmoid function is 1/(1 + e-x)



  

Bias Weight

● Both the threshold and sigmoid functions have a 
“threshold” at zero

● The bias weight, w
0,j
, sets the actual threshold for the 

unit

● The unit is activated when the weighted sum of the 
'real' inputs    (i.e., excluding the bias input) 
exceeds w

0,j



  

Computing Boolean Functions

● With suitable bias weights, threshold units (i.e., 
units with a threshold activatin function) 
compute boolean functions of their inputs

● We can use such units to build a network to 
compute any boolean function of its inputs



  

Example: Computing AND

● Assume the input values for links 1 
and 2 are both 1, i.e., a

1
 = a

2
 = 1, and 

w
1,i

 = w
2,i

 = 1

● Input value for link 0 is -1, i.e., a
0
 = 

-1, and w
0,i

 = 1.5

● Threshold function outputs 1 when 
the input is positive and 0 otherwise



  

Exercise: Computing OR

● Devise a set of weights which compute the 
boolean function 'or'

● Assume that the inputs are either 0 or 1, i.e., a
1
, 

a
2
 = 0 or 1, and that a

0,i
 = -1

● Find values for w
0,i
, w

1,i
, w

2,i
 such that the unit 

computes a
1
 a

2



  

Exercise: Computing OR

● Assume the input values for links 1 
and 2 are both 1, i.e., a

1
 = a

2
 = 1, and 

w
1,i

 = w
2,i

 = 1

● Input value for link 0 is -1, i.e., a
0
 = 

-1, and w
0,i

 = 0.5

● Threshold function outputs 1 when 
the input is positive and 0 otherwise



  

Network Structures

● Acyclic or feed-forward networks
● represents a function of its current inputs
● has no internal state otther than the weights themselves

● Cyclic or recurrent networks
● feeds its output back into its own inputs
● response to inputs depends on the initial state of the network, 

which may depend on previous inputs
● supports short-term memory
● activations of units form a dynamical system that may reach a 

stable state, or exhibit oscillations or even chaotic behaviour



  

Feed-forward Networks

● In a single layer feed-
forward network, or 
perceptron, there are two 
layers – all input units are 
connected directly to the 
output units

● A multi-layer feed-forward 
network has hidden units – 
one or more layers of units 
between the inputs and the 
outputs

Perceptron

Multi-layer Network



  

Perceptrons

● With a thresshold activation function, 
perceptrons can be viewed as representing 
boolean functions

● However perceptrons can only represent 
linearly seperable functions – can't represent 
functions such as XOR (Minsky & Papert, 1969)



  

Networks with Hidden Units

● Adding hidden layers enlarges the set of hypotheses the 
network can represent

● With a single hidden layer of sufficient size, it is possible to 
represent any continous function of the inputs with arbitrary 
accuracy

● With two hidden layers, discontinous functions can be 
represented

● However the number of hidden units required grows 
exponentially with the number of inputs – 2n/2 hidden units 
are required to encode all boolean functions of n inputs

● The most common case is a single hidden layer



  

Learning in Neural Networks

● Neural network learning algorithms work by adjusting the 
weights to minimise some measure of error on the training set

● The training set examples are run through the network one at a 
time, adjusting the weights slightly after each example to reduce 
the error

● The amount by which the weights are adjusted is determined by 
the learning rate

● Each cycle through the examples is called an epoch

● Epochs are repeated until some stopping criterion is reached – 
e.g., the weight changes have become very small



  

Learning in Perceptrons

● The error measure is usually taken to be the sum of squared errors

● The squared error for a single training example with input x and true 
output y is given by

where h
w
(x) is the output of the network on the training example

● To reduce the squared error E each weight is updated using

where α is the learning rate and g' is the derivative of the activation 
function – i.e., error is apportioned proportional to the link weight



  

Learning in Multi-layer Networks

● In a perceptron, each output unit is independent of 
the others – each weight affects only one of the 
outputs

● If there are hidden units, we can't consider each 
output in isolation

● We need to consider a vector of output values 
h

w
(x) and each example has a classification vector 

y
● We also need to backpropogate the error from the 

output layet to the hidden layer(s)



  

Backpropogation

● Compute error values for the output units, using 
the observed error

● Starting with the output layer repeat for each 
hidden layer back to the input layer:
● apportion the error values for nodes in this layer to 

nodes in the previous layer (on the basis of the 
current weights)

● update the weights between the two layers to 
reduce the error



  

Uses of Neural Networks

● Neural networks can be used for classification or regression

● Activation of the input units represents features of the 
problem or situation

● Activation of the output unit(s) represent the output value or 
classification

● For boolean classification with continuous outputs (e.g., 
sigmoid units) there is typically a single output with a value > 
0.5 interpreted as one class and < 0.5 the other

● With k classes there are k output units, with the value of 
each output unit representing the relative likelihood of that 
class given the input



  

Examples

● For some problems neural networks are 
better, while for others decision trees 
are better

● For example, the restaurant problem is 
not linearly seperable and a perceptron 
(with 11 inputs and 1 output) can only 
learn to classify 65% of the data

● In contrast, a majority function with 11 
inputs can be learnt quite easily by a 
perceptron as it's linearly seperable, but 
is hard for a decision tree



  

Choosing the Network Structure

● For any particular network structure it is hard to characterise exactly which 
functions can be represented and which cannot

● Determining an appropriate network structure for a particular problem usually 
involves some experimentation to find the number of layers (and hidden nodes 
for multi-layer networks) that work best

● A typical approach is to try several different networks and keep the best

● If we limit ourselves to full-connected networks the only choices we have to 
make are the number of hidden layers and their sizes

● For example, for the restaurant problem, a single hidden layer containing four 
nodes approaches the performance of the decision tree



  

Example



  

Non Fully-conected Networks

● We can produce non fully-connected networks 
by starting with a fully connected network and 
removing links or nodes

● After the network is trained for the first time, we 
identify those connections (and units) which can 
be removed

● The network is retrained and if the performance 
has not decreased, the process is repeated

● Other approaches have been proposed for 
“growing” a larger network from a smaller one



  

Summary

● Neural networks work well for some problems which decision 
trees find hard

● Perceptrons have simple structure and it's often easy to to see 
how to encode a learning problem as a perceptron

● However if we need to learn a function which is not linearly 
seperable, the network must have one or more hidden layers – 
often not clear what network structures are appropriate

● If we choose a network which is too big it will be able to 
'memorise' all the examples, and will not necessarily generalise 
to inputs that have not been seen before

● Neural networks may need significant computation to train – the 
multi-layer restaurant network needed 350 passes through the 
training set; the decision tree is induced in one pass
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