

Artificial Intelligence

Lecture 15 – Neural Networks

Outline

● Units and links
● Activation functions
● Computing boolean functions
● Network structures

● perceptrons
● networks with hidden units

● Learning weights and backpropogation
● Choosing an appropriate network structure

Neural Networks

● A neuron is a brain cell that collects and processes electrical signals

● Information processing capabilities of the brain emerge from
interactions of networks of neurons

● Early work in AI, e.g., McCulloch & Pitts 1943) investigated artificial
neural networks

● Nodes in an (artificial) neural network are much simpler than real
neurons

Units & Links

● (Artificial) neural networks are composed of nodes or
units

● Each unit has an activation level, a
i
 which ranges

from -1 (or 0) to +1
● Units are connected by directed links – a link from

unit j to unit i serves to propogate the activation a
j
 of

unit j to i

● Each link also has an associated weight, w
j,i
, which

determines the strength and sign of the connection

Computing Activation

● To compute its activation, a
i
, each unit i first computes a

weighted sum of its inputs given by

where n is the number of other units which have links to i
and a

j
 is the activation of the j-th such unit, 0 < j ≤ n

● It then applies an activation function, g, to this sum to
derive its activation

Computing Activation

Activation Function

● Activation function must satisfy two properties
● The unit should be active (activation near +1)

when the 'right' inputs are given and inactive
(activation near -1 or 0) when the 'wrong' inputs
are given

● Activation function must be nonlinear, otherwise
the whole network collapses to a simple linear
function

Threshold & Sigmoid Functions

● Two commonly used activation functions are the
threshold function (a) and the sigmoid function (b)

● Threshold function outputs 1 when the input is positive
and 0 otherwise

● The sigmoid function is 1/(1 + e-x)

Bias Weight

● Both the threshold and sigmoid functions have a
“threshold” at zero

● The bias weight, w
0,j
, sets the actual threshold for the

unit

● The unit is activated when the weighted sum of the
'real' inputs (i.e., excluding the bias input)
exceeds w

0,j

Computing Boolean Functions

● With suitable bias weights, threshold units (i.e.,
units with a threshold activatin function)
compute boolean functions of their inputs

● We can use such units to build a network to
compute any boolean function of its inputs

Example: Computing AND

● Assume the input values for links 1
and 2 are both 1, i.e., a

1
 = a

2
 = 1, and

w
1,i

 = w
2,i

 = 1

● Input value for link 0 is -1, i.e., a
0
 =

-1, and w
0,i

 = 1.5

● Threshold function outputs 1 when
the input is positive and 0 otherwise

Exercise: Computing OR

● Devise a set of weights which compute the
boolean function 'or'

● Assume that the inputs are either 0 or 1, i.e., a
1
,

a
2
 = 0 or 1, and that a

0,i
 = -1

● Find values for w
0,i
, w

1,i
, w

2,i
 such that the unit

computes a
1
 a

2

Exercise: Computing OR

● Assume the input values for links 1
and 2 are both 1, i.e., a

1
 = a

2
 = 1, and

w
1,i

 = w
2,i

 = 1

● Input value for link 0 is -1, i.e., a
0
 =

-1, and w
0,i

 = 0.5

● Threshold function outputs 1 when
the input is positive and 0 otherwise

Network Structures

● Acyclic or feed-forward networks
● represents a function of its current inputs
● has no internal state otther than the weights themselves

● Cyclic or recurrent networks
● feeds its output back into its own inputs
● response to inputs depends on the initial state of the network,

which may depend on previous inputs
● supports short-term memory
● activations of units form a dynamical system that may reach a

stable state, or exhibit oscillations or even chaotic behaviour

Feed-forward Networks

● In a single layer feed-
forward network, or
perceptron, there are two
layers – all input units are
connected directly to the
output units

● A multi-layer feed-forward
network has hidden units –
one or more layers of units
between the inputs and the
outputs

Perceptron

Multi-layer Network

Perceptrons

● With a thresshold activation function,
perceptrons can be viewed as representing
boolean functions

● However perceptrons can only represent
linearly seperable functions – can't represent
functions such as XOR (Minsky & Papert, 1969)

Networks with Hidden Units

● Adding hidden layers enlarges the set of hypotheses the
network can represent

● With a single hidden layer of sufficient size, it is possible to
represent any continous function of the inputs with arbitrary
accuracy

● With two hidden layers, discontinous functions can be
represented

● However the number of hidden units required grows
exponentially with the number of inputs – 2n/2 hidden units
are required to encode all boolean functions of n inputs

● The most common case is a single hidden layer

Learning in Neural Networks

● Neural network learning algorithms work by adjusting the
weights to minimise some measure of error on the training set

● The training set examples are run through the network one at a
time, adjusting the weights slightly after each example to reduce
the error

● The amount by which the weights are adjusted is determined by
the learning rate

● Each cycle through the examples is called an epoch

● Epochs are repeated until some stopping criterion is reached –
e.g., the weight changes have become very small

Learning in Perceptrons

● The error measure is usually taken to be the sum of squared errors

● The squared error for a single training example with input x and true
output y is given by

where h
w
(x) is the output of the network on the training example

● To reduce the squared error E each weight is updated using

where α is the learning rate and g' is the derivative of the activation
function – i.e., error is apportioned proportional to the link weight

Learning in Multi-layer Networks

● In a perceptron, each output unit is independent of
the others – each weight affects only one of the
outputs

● If there are hidden units, we can't consider each
output in isolation

● We need to consider a vector of output values
h

w
(x) and each example has a classification vector

y
● We also need to backpropogate the error from the

output layet to the hidden layer(s)

Backpropogation

● Compute error values for the output units, using
the observed error

● Starting with the output layer repeat for each
hidden layer back to the input layer:
● apportion the error values for nodes in this layer to

nodes in the previous layer (on the basis of the
current weights)

● update the weights between the two layers to
reduce the error

Uses of Neural Networks

● Neural networks can be used for classification or regression

● Activation of the input units represents features of the
problem or situation

● Activation of the output unit(s) represent the output value or
classification

● For boolean classification with continuous outputs (e.g.,
sigmoid units) there is typically a single output with a value >
0.5 interpreted as one class and < 0.5 the other

● With k classes there are k output units, with the value of
each output unit representing the relative likelihood of that
class given the input

Examples

● For some problems neural networks are
better, while for others decision trees
are better

● For example, the restaurant problem is
not linearly seperable and a perceptron
(with 11 inputs and 1 output) can only
learn to classify 65% of the data

● In contrast, a majority function with 11
inputs can be learnt quite easily by a
perceptron as it's linearly seperable, but
is hard for a decision tree

Choosing the Network Structure

● For any particular network structure it is hard to characterise exactly which
functions can be represented and which cannot

● Determining an appropriate network structure for a particular problem usually
involves some experimentation to find the number of layers (and hidden nodes
for multi-layer networks) that work best

● A typical approach is to try several different networks and keep the best

● If we limit ourselves to full-connected networks the only choices we have to
make are the number of hidden layers and their sizes

● For example, for the restaurant problem, a single hidden layer containing four
nodes approaches the performance of the decision tree

Example

Non Fully-conected Networks

● We can produce non fully-connected networks
by starting with a fully connected network and
removing links or nodes

● After the network is trained for the first time, we
identify those connections (and units) which can
be removed

● The network is retrained and if the performance
has not decreased, the process is repeated

● Other approaches have been proposed for
“growing” a larger network from a smaller one

Summary

● Neural networks work well for some problems which decision
trees find hard

● Perceptrons have simple structure and it's often easy to to see
how to encode a learning problem as a perceptron

● However if we need to learn a function which is not linearly
seperable, the network must have one or more hidden layers –
often not clear what network structures are appropriate

● If we choose a network which is too big it will be able to
'memorise' all the examples, and will not necessarily generalise
to inputs that have not been seen before

● Neural networks may need significant computation to train – the
multi-layer restaurant network needed 350 passes through the
training set; the decision tree is induced in one pass

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

